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Theory of radiation reaction and atom self-energies : 
an operator reaction field 

R Saunders, R K Bullough, and F Ahmad 
Department of Mathematics, University of Manchester Institute of Science and Technology, 
Manchester M60 lQD, UK 

Received 10 July 1973, in final form 30 September 1974 

Abstract. We derive an operator field which includes the radiation reaction and self-fields 
for a single two-level atom in operator form. The field generalizes in a natural way the C- 

number theory of radiation reaction and frequency shifts due to Lorentz. By a trivial 
extension the operator field can be applied to the more complicated cases of a single multi- 
level atom and the super-radiant problem of N atoms on the same site where these are 
coupled either to the vacuum or the vacuum and additional imposed quantized fields. 
By further extension it also applies to the case of N atoms on different sites. 

Explicit expressions for positive and negative frequency parts of the total operator field 
are given in terms of arbitrary dipole operator sources and are apparently valid for times 
I >> w;’ >> where U, is the atomic resonance and U,,, a cut-off used systematically 
throughout the theory. The theory is internally consistent for wmsx < 3c but must then be 
approximated in order to be applicable. In this case, or if the approximation is ‘improved’ 
by wmaX + cc the tields either cease to be Heisenberg operators or break the equal-time 
matter-field commutation relations. These inconsistencies reflect those implicit in the mass 
renormalization problem. 

The discussion is specialized to the spontaneous emission of a single two-level atom. 
The motion is described by three coupled nonlinear operator equations. Within a slowly 
varying amplitude approximation (SVA) the dipole operator satisfies a damped oscillator 
equation with damping constant the Einstein A coefficient and with the natural frequency 
shifted from the atomic resonance by A just twice Bethe’s expression for the Lamb shift of 
single levels. The spectrum of spontaneous emission is calculated: it is Lorentzian but 
peaked about the resonance shifted by A. 

The SVA is shown to be valid to first order in e*. The results therefore agree identically 
with those of second-order perturbation theory in the short-time limit but remain valid to 
the same order e’ for all later times. 

1. Introduction 

In a previous paper (Bullough er al 1974. to  be referred to as I) we used linear response 
theory in the form of an all-order perturbation theory to  derive the spontaneous and 
stimulated emission rates, the Lamb shift, and the field-dependent generalized Lamb 
shift (‘lamp’ shift) for a single two-level atom in an ambient radiation field. The main 
point of these papers, however, is to  set up a radiation reaction field theory of these 
phenomena. Reaction field theory has played a fundamental role in radiation theory 
since it was first introduced by Lorentz (1909)t. The importance of a reaction field 

t See especially the 1952 edition of this book (New York: Dover) s 2 7 ,  28, 37 and 38, and note 18 
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theory for a single atom at the present time lies in the natural way in which it fits into 
the theory of many-atom systems interacting with fields of arbitrary intensity. 

In this paper we derive an operator field which contains an operator reaction field 
within it and generalize in a natural way the c-number theory of radiation reaction and 
frequency shifts due to Lorentz. Unfortunately when one attempts to consider the 
limit as the number of electromagnetic field modes tends to infinity the self- and 
reaction-field theory (SFT) is internally inconsistent. This shows itself as in I in the usual 
non-relativistic divergences and in addition and in consequence in the breakdown of the 
equal-time matter-field commutation relations. We shall therefore be concerned to 
show that the SFT is consistent with all known results in non-relativistic perturbation 
theory, with the results of I and with those obtained, for example, by the master equation 
methods exploited particularly by Agarwal(l970, 1971a, b, 1973a. b). 

The work of checking the SFT is, however, largely deferred to  a later paper. In this 
paper we can merely develop the theory of the operator fields themselves and consider 
the particular problem of a single two-level atom coupled to  the vacuum. 

The plan of the paper is as follows : In Q 2 we derive the total field operator as a 
linear combination of matter and free field operators; the total field operator is derived 
in a form not restricted to the case of a single two-level atom. In Q 3 we derive appropriate 
forms of the negative and positive frequency parts of the total field operator and show 
in the case of a single two-level atom how these simplify providing the imposed fields 
are weak. In Q 4 we derive and investigate the operator equations of motion for a single 
two-level atom initially in the vacuum state. We find the Lamb shift is the doubled 
Bethe shift A obtained in I : the equation of motion for the expectation value of the 
dipole operator agrees with that derived in I for this case. In  Q 5 we calculate the auto- 
correlation function for a single initially inverted atom in the vacuum field. The emission 
spectrum is Lorentzian and resonant about the atomic frequency with Lamb shift A. 

2. The total field operator 

In this section the problem of a single two-level atom in its radiation reaction field is 
considered. The results obtained are however of greater generality; they apply, for 
example, to the single multi-level atom and to the problem first considered by Dicke 
(1954) of N super-radiant atoms on the same site and can be extended to  N atoms on 
different sites. 

We work in dipole approximation and second quantization. We take as the 
Hamiltonian 

H = $hw,a,+ hwk(a: , ,ak, ,+i)-P.  e .  (2.1) 
k,A 

In this (k, A) labels a mode of the free field with wavevector k and polarization index E, 
(A = 1 or 2); = ck .  The field e can be written as 

where 2k.A is the unit vectdr defining the polarization direction of the mode (k, i) and 
ak,A and are the photon creation and annihilation operators which obey the com- 
mutation relations 

[a,,,, a:',,'] = bfi'b,j,', (2.3) 
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The two-level atom has eigenstates Is) and 10) with energies E ,  and E ,  respectively; 
& - E ,  = ho,. The operator oz is a Pauli spin operator such that the eigenvalues of 
+ h o p ,  are i i h w , .  

The matrix element of the x component of the atomic dipole operator e x  is 

e ( 0 l x l s )  = exOs = e x , ,  

as in I :  we shall now use p for this. In  second-quantized notation the total dipole 
operator p is iipo, in which ii is a unit vector in the x direction and ox is a second Pauli 
spin operator. We introduce the third Pauli spin operator oy to complete, with the 
addition of the unit operator, an SU, Lie algebra. The spin operators a = ( o x o y ~ J  
thus satisfy the usual commutation relations 

a x a = 2ia. (2.4) 

The spin operators a commute with the photon operators ak, , .  a i , I .  Hence we have 
the commutation relation 

[e([) .  a([)] = 0. (2.5) 
We now construct the total field operator e ( [ )  of equation (2.2). Heisenberg's equations 
of motion together with the commutation relation (2.3) yield 

ak. j .  . t  = +iokai , ,+h- 'p  . 7 , , ,  (2.6b) 

Hence 

Thus the total field operator of equation (2.2) is 

where 

(2.9) 

is the free$eld operator, and cc stands for complex conjugate. 
By using the obvious relation 

in which U is the unit vector and k is a unit vector along k and replacing V - '  Ck by 
( 2 7 ~ ) - ~  J dk we find that 
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We now reverse the orders of integration which is legitimate for finite omax and use 
the relation 

to rewrite the total field operator as 

(2.1 1) 

(2.12) 

In (2.12) the free field part of the total field operator reduces to eo(0) at t = 0 whilst 
the remaining part of the field due to  dipole sources vanishes. Thus the commutation 
relation (2.5) between the total field operator e([) and the matter operator a(t) holds 
at t = 0 and presumably for all t > 0 : this is possible because although e(t) is linear in 
p ( t )  which does not commute with ox and 0, i t  is actually a linear functional of p( t ’ )  
for positive times t’ < t .  Since eo(t) evolves as a free field operator whilst the matter 
operators are Heisenberg operators evolving with the full Hamiltonian H the equal-time 
commutators of eo([) with a([) are not zero. Thus although the total field in (2.12) 
satisfies the commutation relations (2.5) its two parts do  not. 

The equation (2.12) can be integrated by parts to give 

(2.13) 

(2.14a) 

(2.14b) 

(2.14c) 

and 

f ( t )  = sin(wmaxt)t- I .  (2.1 5) 

There is no reason to suppose this field breaks the commutation relations : i t  reduces 
to e,(O) at t = 0 and the commutation relations are satisfied there; since everything is 
well defined they will be satisfied also for all t > 0. 

Trouble arises as soon as we try to take the limit as wmax --* x .  In this limit 

f ( t )  -P xd( t ) ,  f ( r )  + 7CJ’(t). f ( t )  + nd”(r) 

where 6”(t)  = (1/27t)JZx ( -ik)2 e-ikf dk etc. Thus, in this limit if it exists 

E ,  = - n(p(t)6”(0)-p(0)6”(t)) 

E2 = - @(t)d’(O)-b(O)d’(t)) 

E ,  = - n( p(t)d(O)-p(O)6(t)) 

(2 .16~)  

(2.16b) 

(2 .16~)  

and 
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E , ,  E ,  and E ,  all vanish identically at t = 0. For t > 0, E ,  and E ,  diverge. The terms in 
E ,  are associated with the contact term of Power and Zienau (1959) omitted in (2.1). 
Their longitudinal part is a self-Coulomb interaction in dipole approximation and is an 
artefact of that approximation. The terms in E ,  never figure in the analysis and we 
temporarily drop them here. The terms in E ,  vanish from the field when t > 0 ;  they 
are associated with the square of the vector potential in a Hamiltonian taken outside 
dipole approximation. Thus in the all-mode ‘limit’ 

i f f  > 0 
2 [ e o ( t ) + g ( P ( t )  - w s K 0 W ) ) .  

if t = 0. 
(2.18) 

and, as in I, 

K O  2 LJoz ws dk. 

Crisp and Jaynes (1969) and Stroud and Jaynes (1970) together show that K O  
diverges only as a consequence of the dipole approximation. Even within this approxi- 
mation there is no difficulty at t = 0 as we noted above. However, the field in (2.18) 
obviously jumps at t = 0. Since eo(t) evolves smoothly as a free field operator from 
t = 0 and is differentiable there, whilst the remaining part of the field jumps, the total 
field is at best differentiable in a generalized function sense and cannot evolve smoothly 
as a Heisenberg operator. Since e(t)  commutes with matter operators at t = 0 it cannot 
do  so for t > 0. 

An alternative is to define e([) by (2.18) for t > 0 and as l imt+o+ e(t)  for t = 0. Since 

(2.19) 

and eo(0) commutes whilst the remaining terms do  not commute with all of ox, oy and 
oz, then if e( t )  evolves from t = 0, as a Heisenberg operator. i t  cannot commute with 
the matter operators for all t > 0,. 

This failure of the equal-time commutation relations does not devastate the argu- 
ment-apparently because i t  appears to be possible to carry it through for finite w,,,. 
Because this introduces functionals ofp( t )  we d o  not attempt such a programme here. 
Our point of view is to take w,,, very large but finite so that E ,  and E ,  are formally 
well described by (2.14a, b) for all t >> mi,’,. Further (2.17) will be good to order U;,’, 

for all t >> o;a,t. Thus we can take (2.18) as a formal definition of e(t)  for t > 0 by 
taking om,, large enough and the field operator is then a linear function of matter 
operators to order w;:,. This definition makes the problem tractable in a formal way 
since it changes what would be nonlinear integro-differential operator equations to 
nonlinear differential operator equations which are more easily sofved. Moreover, ,if 
the equal-time field-matter commutation relations (2.5) apply to (2.12), they apply to 
(2.18) for large enough r .  Agarwal (private communication) has also shown that con- 
sistent approximations, more drastic than those we use here at first, can be made which 
preserve the commutation relations at the expense of the Heisenberg character of the 
operators. 
t This is equivalent to the ‘Markofian approximation’ of master equation theory. Ackerhalt et ol (1973b) 
make the mistake of trying to make this approximation mode by mode for which it cannot be valid. It is here 
good to order o;JX and is exact in the limit which is (2.17). 
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Finally we have to choose w,,,. We assume with Bethe (1947) that 

w,,, = wc = m , c 2 h - '  

the Compton frequency, so that we regain his formula for the Lamb shift. For large r 
all the results then coincide with I and with more conventional methods. 

These results d o  not follow from (2.18) directly. The dipole operator p(r) can be 
expressed in terms of positive and negative frequency part operators. We set 

(2.20) 

(2.21) 

are Heisenberg operators. For free matter, ot(t) = o,(O) e*'usr and we expect that for 
the coupled system of matter and field 

a,([) = R,(t)  et'w5r (2.22) 

where R,(t) are operators varying slowly on a time scale of order 0;'. We can expect 
this when. but only when, the perturbing fields are weak and the only significantly 
occupied electromagnetic field modes are sharply peaked about the resonance frequency 
w, of the two-level atom. The operators (2.22) are then positive and negative frequency 
parts of a,(t). 

I t  is shown in an earlier paper (Bullough 1973. Appendix 2) that. with these assump- 
tions, the field (2.18) when divided into positive and negative frequency parts by dividing 
a, as in (2.20) yields an acceptable theory of spontaneous emissiont. However. the 
Lamb shift of the frequency w, is 

(2.23) 

This is not a 'dynamical shift' in the sense of the neo-classical theory (NCT) of Crisp 
and Jaynes (1969) and Stroud and Jaynes (1970). I t  does coincide with the long-time 
limit of that shift taken in dipole approximation. however. I t  disagrees with Bethe's 
(1947) result of low-order perturbation theory and with other perturbation theories 
(Saunders and Bullough 1973, Knight 1972) and i t  disagrees with I for the reason i t  
appeals to the propagator F and not to the self-field propagator F +  introduced there. 
Plainly the operator field (2.1 8) corresponds to the field (I, equation (2.29)) considered 
in the Bose theory of 1 6 2 .  The division into positive and negative frequency part 
fields is motivated by the Fermion theory, however, and we need to find a less arbitrary 
approach to this. 

3. The positive and negative frequency parts of the total field operator 

It is plain from the previous paragraph that e( t )  must be split into mutually adjoint parts 
which separately contain the negative and positive frequency parts of the free field 
operator eo(t) ,  preserve the commutation relations for finite w,,,. and preserve the 
character of the fields as linear combinations of single-mode operators. Only the first 
condition is obviously satisfied by the field just discussed. 

t The argument adopts the normal ordering prescription developed in 4 3 and includes the free field divided 
as in 0 3. I t  fails only because it arbitrarily imposes the Bose property from which (2.23) follows. 
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The parts of the free field will be 

Therefore we define the coupled matter-field operators by 
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(3.1) 

where aifA)(t) evolve as Heisenberg operators. For finite om,, e( ' ) ( [ )  preserve the commu- 
tation relations with the matter operators since each ai:i,)(t) commutes separately with 
them. Note that e(')(t) and eh')([) coincide at t = 0 for finite a,,, and this is consistent 
with (2.13). 

Instead of (2.13) however. we now find 

and Ei')(t).etcaredefined by analogy with(2.14). Notenowthatf+(O) = f ( 0 )  = - f w i a x ,  
fi(0) = f ( 0 )  = U,,,, butf'(0) = Ti twi , , .  Both fields (3.3) jump at t = 0 in the formal 
all-mode limit as w,,, -+ c/; since their sum does. However, E"' etc contain terms in 
f k ( t )  which yield principal part integral terms not necessarily vanishing for t > 0. 
We shall not treat these p-integral terms. 

I t  is shown in the appendix that when w,,, + x 

ITL j: p ( t ' ) f +  ( t  - t ' )  dt' = f 1 p(  t )  K + np + ( t )  2 

for all t 2 us- ' .  In this case 

In consequence the analogue of the total field (2.18) is 

(3.5) 

(3.7) 

and the sum ofe(')(t) and e ( - ) ( t )  is precisely the total field of(2.18). This field deliberately 
ignores the contributions of E\')(t) and E;')([). For t > 0 these terms add to (3.7) to 
give, ignoring the p-integrals, just 

These fields are essentially exact for time t >> w;' >> om:, providing the spectrum 
(Fourier transform) of p ( t )  is peaked about fw,. They are certainly not in rotating 
wave approximation (RWA) for example (Bullough 1973). 
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Note that since the two-level restriction nowhere enters into the argument used to  
derive the fields e'([) and the total field e ( [ )  these fields are also valid for a single multi- 
level atom and also for the super-radiant problem of N atoms on one site provided 
p ( t )  is now the total dipole operator for the system and the definitions of K O  and K ,  
are appropriately extended. 

4. The Bloch equations for the two-level atom 

Using the matter operator commutation relations (2.4) and Heisenberg's equations of 
motion we derive the Bloch equation for the two-level atom. These are+ 

b, = -ow,fJy (4.1 a)  

(4.1 b)  

ir, = - 2ph- ' (e( - )oY + b y e ( + ) ) .  (4.1 c) 

The fields e ( * ) ( [ )  are placed in normal order with respect to the matter operators 
a([), that is e ( - ) ( t )  is placed to the left and e(+)([) to the right of these operators. This 
offers the computational advantage that for finite omax the operators eb"(t) inside the 
expectation values for such operator products can be simply evaluated by expressing 
the initial state vector 1 . . .) at t = 0 as a combination of free matter and free field states. 
In the limit as wmax + x the fields eci)(t) do not commute with the a(t) and we need to  
choose the order of field and matter operators. We are free to  choose the normal order 
and call this the 'normal ordering prescription'. 

Now we take the cut-off wmax as the Compton frequency oc. Thus K ,  is small. 
We suppose the initial state of the field is such that excited modes are 'resonant'; such 
modes are resonant if  their spectrum has a width Am << os clustered about os. The 
fields are also 'weak' if the expectation values ( . . .12ph- 'ebr)l . . .) are small compared 
with os. 

ir, = -t qo, + 2ph- ' (e(-)o, + o,e' + )) 

The first two equations of (4.1) imply 

ij, = - o,2a, - 2ph- 'o,(e(-)o, + o,e( + )). (4.2) 

If the driving fields are both resonant and weak and if we ignore the point that K O  is 
actually large, (4.2) shows that we can replace ii, by -oKo, to neglect of terms of order 
Aoo;', 2ph-'(lebT)l)o;1 and Tow;', where To = a o $ ~ ) ~ p ' / h  is the Einstein A 
coefficient. Under these conditions equations (2.22) apply and R,(t) are slowly varying 
operators. Thus the approximation which allows us to write 8, = -o,20x is the slowly 
varying amplitude approximation (SVA). 

Note that ii, = -ofox means neglect of a power series in, in particular, roos-' 
and hence of a power series in e'. This restricts the results to  ones equivalent to those 
at first order in e' in perturbation theory, but the theory remains a dynamical one valid 
for all times greater than or equal to  o;'. Note this series also contains powers of K O .  
Thus the mass renormalization problem is ducked and can be only treated at order 
equivalent to order e' in perturbation theory. This problem could apparently be 
solved to all orders if K O  could be directly if formally eliminated as a mass term from 
the equations (4.1) since these with (3.7) constitute an almost 'exact' system of equations 
for t 2 as- 2 a;,',. We have not solved the problem in this form. 

t We use pe'" for p a ,  e'*'. 
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If 8, = -w:ax, so that terms of the orders stated are neglected, (3.7) is? 

This field neglects terms in E\') and E y ) .  If these terms are included they change the 
field to 

where it is now necessary to assume that W ; ~ W ; , ,  and ~;~o;,, as well as KO are small 
so that ii, = - w:a,. Again we expect renormalization theory 'valid' only to  order e' 
although it is possible to  do better than this with the term in w i a x  by including contact 
terms in the Hamiltonian (2.1) as we will see below. 

In the rest of this section we consider, for simplicity, the spontaneous emission of a 
single two-level atom. The effects of coherent and incoherent fields on the two-level 
atom will be delayed to later papers; the following discussion is essential for an under- 
standing of these more complex effects of fully quantized fields on the two-level atom. 
If the field (4.3) is used in the Bloch equations (4.1), use of the commutation relations 
(2.4) reduces these equations to 

b, = -ow,u, ( 4 . 5 ~ )  

by = wp,- Toay- r,KlaX+2ph-'(e~-)a,+a,eb+)) (4.5b) 

(4.54 

Since at t = 0 the initial state I . . .) is a product of the excited state and the no-photon 
state we can drop the free field operators eF) ( t )  from these equations. Hence we obtain 
from the two equations (4.5a, b) the analogue of (4.2) as 

(4.6) 

This is an oscillator with damping constant To and natural frequency (wf - Klo,I',)1'2. 
Thus the Lamb Shift of the level spacing is 

b, = - r,( 1 + a,) - 2ph- '(eb-)a, + ayer )). 

a, + rob,+(o: - K1@-o)~x = 0. 

~ [ ( o , 2 - ~ ~ ~ , r ~ ) l ' ~ - ~ , ]  'V -:hK,r, (4.7) 
where 

If we choose w,,, = wc me&- this shift of the level spacing is precisely A, twice 
the Bethe shift of each level separately, in agreement with IS. If we define 
P(t )  = p ( .  . . lo,(t)l . . .) we see equation (4.6) is equivalent to a Lorentz damped oseillator 
with inclusion of the Lamb shift. 

t If the exciting modes are well off resonance and are grouped about frequency w, this frequency replaces w, 
in (4.3): if the exciting fields are not weak. their effect must be calculated by working from (3.7) rather than 
(4.3) (likewise (4.4) which follows applies only to weak resonant driving fields). Weak fields can still be as much 
as lO'cgs units corresponding to powers of gigawatts cm-': the frequencies 2 p h - ' ( .  . . /c!,"I.. .) 5 IO' '  Hz. 

Compare also Ackerhalt et al(1973a) and Bullough (1973). 
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We have derived equations (4.5) using the fields (4.3). The more complete fields (4.4) 
introduce quadratic and cubic divergence terms. Then a comparison between these 
two fields shows that the quadratically divergent term is associated with K ,  whilst the 
cubically divergent term is associated with K O  and goes out with it. This is a feature of 
the two-level atom restriction. 

We should point out that the cubic divergence vanishes in any case. Power and 
Zienau (1959) show that the Hamiltonian (2.1) which is taken in dipole approximation 
must be corrected by the contact term 

(4.9) 

For the dipole density p ( x )  we take 

p ( x )  = i o ,  6 ( x - x , )  (4.10) 

where x o  is the site of the single two-level atom. Then 

p2(x) = p20:6(0)6(X - xo)  = p26(0)6(x - X 0 ) I  (4.1 1) 

where we have used the operator relation 0; = I ,  the identity operator. Thus HcOntact 
does not change the equations of motion in this case. Then the tranverse part of HcOntaC, 
is 

For the two-level atom this energy shift is to be associated with K O  in (4.4) and goes out 
with it in this case. In the cases of the multi-level atom and of N atoms on the same 
site we cannot use the constant of motion 0: = I .  In these cases the transverse part 
of the contact term figures in the equations of motion and, up to e2 order in perturbation 
theory, is just sufficient to remove the cubic divergence from the theory. The linear 
divergence K O  remains in the equations of motion. We are therefore justified in 
systematically dropping the contact term from H and ignoring the cubic divergences 
where these emerge later in the argument. 

Since the quadratically divergent term is not eliminated from the shift of the level 
spacing in the theory of the two-level atom it may be said to be this that breaks the 
equal-time matter-field commutation relations. Note however that this term vanishes 
from the total field operator since the fields (3.8) sum to 

+--sjY(t). ) 3: 
(4.12) 

This field contains K O  and what more generally is the spurious contact contribution 
and breaks the equal-time matter-field commutation relations (2.5). Thus the theory is 
internally inconsistent in the all-mode limit. For this reason a number of alternative 
fields and ordering prescriptions were examined in Bullough (1973) : none displayed 
the elegance, simplicity and complete agreement with previous work exhibited by the 
fields (3.8) interpreted with the normal ordering prescription in e’ approximation. 
Presumably this is because for finite w,,, the theory can be carried through consistently 
and exactly-although at order e’ (convergent) mass terms would need to  be eliminated 
in the usual way. The normal ordering prescription facilitates evaluation of the free 
field terms whether the problem can be formulated consistently or not : in a later paper 
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we will show that all field-dependent quantities can be evaluated this way again in 
agreement with order e2 perturbation theory. 

We can now comment on the status of the neo-classical theory (NCT) of Jaynes and 
co-workers (Jaynes and Cummings 1963, Crisp and Jaynes 1969, Stroud and Jaynes 
1970, Jaynes 1973). The NCT is a reaction field theory : it can always be obtained from 
a quantal theory by replacing the total field operator, including all self- and reaction- 
field parts, by its expectation value. Two consequences follow : first normal ordering 
is irrelevant so division of the field into negative and positive frequency parts is also. 
Then only the total field figures in the theory and only K O  figures in the level shift. 
Since the transverse part of the contact term in H eliminates the cubic divergence, 
whilst Crisp and Jaynes (1969) show that KO is actually finite in the all-mode limit outside 
dipole approximation, and since the quadratic divergence does not appear in the total 
field, the NCT is a finite theory. 

This feature is a feature ofthe Bose theory of I for exactly the same reasons. However 
the second result implicit in the NCT is that products of matter operators are decorrelated 
so that the theory is intrinsically nonlinear: indeed the expectation values of equations 
(4.1) become the nonlinear c-number equations used by Jaynes. Despite the internal 
inconsistency of the non-relativistic quantum theory of self- and reaction-fields developed 
in this paper the initial postulates of the theory appeal to us more than the ad hoc 
definitions of the field in the NCT : experiment also seems to  prefer the quantal theory 
(Gibbs 1973, Wessner et a1 1973). One final summarizing comment on the quantal 
theory: although the fields (4.4) contain terms in U:,,, U:,, and CO,,,, the first is always 
eliminated by the contact terms in the original Hamiltonian taken in the dipole approxi- 
mation as we showed. Then in the particular case of the two-level atom the third term in 
U,,, does not figure in the equations of motion (4.5) but the second does. In contrast 
in the case of the multi-level atom the second can be eliminated by the sum rule for 
oscillator strengths at the order e' of the calculation but the second term in U,,, now 
remains. I t  can then be identified with Bethe's kinetic mass renormalization. We have 
not been able to  solve the mass renormalization problem at any higher order in e2 
and the quantal theory remains a divergent theory. 

5. The spectrum of spontaneous emission 

We calculate the emission spectrum of a single atom in the case when the initial state 
1 . .  .) is a product of the excited matter state Is) and the photon vacuum state. Thus we 
can drop the free fields eb*)(t) from equations (4.5a, b) and rewrite these as 

The first equation, for example, integrates to 
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and we have agreed to ignore the correction -a-’oS-’ to K , .  Note that a+ couples 
to a- and vice versa. However by successive iteration it is clear that the corrections 
oscillate at frequency 201, approximately under the integral sign. These terms may be 
dropped. This approximation is commonly called a rotating wave approximation 
(RWA) and it is the first time that such an approximation has been used in the theory. 
Thus we may take 

a+(t) = a+@) eiwb*. (5.4) 

We now calculate the autocorrelation function 

which is symmetric in ( t ,  t’). We note however that it can be written as 

R(t, t’) 5 (. . .la+(r‘)o-(r’)\. . .) cos[o;(t- t‘)] 

E ps,(t’) e - +ro(r  -1’) cos wb(t - t’). 

These results exemplify the quantum-mechanical regression theorem (Lax 1968) : p,,(t’) 
is the occupation number of the upper state at time t‘ and takes the form 

pss(t‘) = (5.7) 

In a system of many weakly interacting atoms in a steady state the occupation numbers 
p,,(t’) can be averaged over all initial states t’ and will be independent oft’. Since t ’  is 
chosen as the initial time, T = t - r’ 2 0. The power spectrum is therefore 

Since the negative frequency part is negligible for o 2 w: the spectrum is Lorentzian 
and peaked at 0: as expected. The frequency w6 is shifted from o, by twice the Bethe 
level shift : this result completely solves a problem which could only be treated very 
artificially by other methods (Kroll 1965). In other respects the spectrum agrees with 
that obtained by Weisskopf and Wigner (1930) once their spectrum is renormalizedt. 

Note that the expectation values of a+ and U- vanish if the initial state is Is) and 
the dipole moment 

vanishes throughout the motion. Thus radiation takes place through the autocorrelation 
function, and not through the dipole moment as in classical theories. 

t The Weisskopf-Wigner spectrum contains w in the numerator which must be replaced by w,:  otherwise 
the integrated spectrum diverges logarithmically. 
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6. Conclusions 

The results of this section support the view that the self-field theory developed in this 
paper is an applicable theory despite its internal inconsistencies. 

We shall consider in further papers the absorption, emission and radiative level 
shifts in the case of a single two-level atom in 'weak' imposed coherent and incoherent 
fields using the self-field theory of this paper. We show later how the operator field 
theory can be applied with equal apparent success to multi-level single-atom problems 
and to many-atom problems. 

Appendix 

We here derive the result (3.5) : 

for all t >> w; ' .  Heref,(t) is given by (3.4): 

1 .e  T i W m a x t  - 

1 
f * ( t )  = + 1  

and K ,  is given by (3.6). 
We have 

1 1 "  e - ikt( 1 T e T i(w T k) t  
= - dkp(k)( - ik)3 Jowmax d o  

211 - *  f i(o T k )  

i "  
= T-s dkp(k)(-ik)3e-ik'ln 

2n -" 

i "  
f- J dkp(k)( - ik)3 e-ikt dw . 

271 - W  

We assume that p(k )  is peaked about & w, where 0 < w, << w,,, and have used 

(wmaxTk) t  Tiu m e T i u  e 
- d u  N jTkt (t > 0) (A.3) du 

= U 
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for w,,, >> (k ( .  This is approximately 

> '}the case ( - )  

> '}the case (+) 

- 111, 

k < O  

+in, k < O  

m 

J T k r  
-du 2: 

for all times r >> Ikl- '. Then (A.2) reduces to approximately 

omax i ( - i lr)  - ip( t) In - + -/ p(  k)( - i k) e -  i k r  dk (case ( - 1) 
ws 2n 0 

for all times r >> os-'. This is just the result (3.5),  namely 
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